New Key Metric for Virtusize Logic! Introducing "Size Match Rate."

New Key Metric for Virtusize Logic! Introducing "Size Match Rate."

New Key Metric for Virtusize Logic! Introducing "Size Match Rate."

Introduction

At Virtusize, our in-house data science team continuously conducts evaluations and regularly refines the accuracy of our recommendation services. The information we collect from our Virtusize users consists of only four size details (height, weight, gender, and age). By combining this with some basic item information provided by our clients, we can adjust our how our system makes recommendations. Today, we will introduce the important metric for adjusting our recommendation logic, called the "Size Match Rate," and share a case study where we applied logic adjustments.

Size Match Rate

As we work to improve recommendation accuracy, we rely on a key metric called the "Size Match Rate." This term refers to the percentage of purchases, where customers bought the size that Virtusize recommended first.

This rate is calculated by combining our recommendation data with order information from our clients. We can delve into various categories and groups, such as brand + product type and product type + style, to score the match rate. By identifying where our recommendations align with customer expectations and where they do not, we can make more precise logic adjustments.

Previously, we manually verified and evaluated the data. However, since developing an automated "size match rate" calculation tool- we can now calculate a year's worth of "size match rates" within an hour. This allows us to more specifically identify areas where we can improve, for each client, and significantly reduce the time required for the software adjustments, leading to expected improvements in the quality of our service.

Size Recommendations Based on Both Customer and Item Size Information

This approach is closely related to the core philosophy of our size match algorithm. At Virtusize, we believe that size recommendations should be based on both the customer's size information and the item's size details. Common approaches that ignore item measurements and only make suggestions based on customer attributes, can mislead customers in the apparel industry. An example of this: "Users similar to you (age, gender) also purchased this."

Simply recommending items based on what other people bought, could result in customers purchasing sizes that do not fit their unique body measurements.

Therefore, by taking extra steps to verify the "size match rate," we can determine how accurately Virtusize recommends sizes and specifically how well the purchased sizes actually match the sizes recommended by Virtusize. A high "size match rate" is not always good, nor is a low rate always problematic. For example, if a specific product has unusual sizing and most people who usually buy M would need an L, and if this information isn't well communicated, some customers might still purchase M based on their usual size… leading to a lower "size match rate." A low "size match rate" doesn't necessarily indicate poor recommendation accuracy; it serves as a starting point for identifying causes and finding solutions in collaboration with our clients.

Case Studies of Improving Size Match Rate

When we identify groups with "size match rates" below our standard, our data science team begins evaluating whether adjustments to Virtusize's software are necessary or if there are potential improvement points on the client’s site.

We have collaborated with many clients to make various improvements, successfully increasing "size match rates" by up to 20% on numerous sites.

A simple example is a client site we'll call Brand A. Brand A's performance at the beginning of 2023 was relatively stable and not bad. We had sufficient data to measure the "size match rate" for each item and test new software adjustments. Through repeated adjustments and measurements over a year, we improved Brand A's "size match rate" by 18.6% compared to the same period the previous year!

Conclusion

Our data science team's mission is to continuously explore core methods for improving recommendation accuracy from both precision and performance perspectives, with the "size match rate" playing a significant role in this. In 2024, we will continue our efforts to enhance the quality of our service!

Introduction

At Virtusize, our in-house data science team continuously conducts evaluations and regularly refines the accuracy of our recommendation services. The information we collect from our Virtusize users consists of only four size details (height, weight, gender, and age). By combining this with some basic item information provided by our clients, we can adjust our how our system makes recommendations. Today, we will introduce the important metric for adjusting our recommendation logic, called the "Size Match Rate," and share a case study where we applied logic adjustments.

Size Match Rate

As we work to improve recommendation accuracy, we rely on a key metric called the "Size Match Rate." This term refers to the percentage of purchases, where customers bought the size that Virtusize recommended first.

This rate is calculated by combining our recommendation data with order information from our clients. We can delve into various categories and groups, such as brand + product type and product type + style, to score the match rate. By identifying where our recommendations align with customer expectations and where they do not, we can make more precise logic adjustments.

Previously, we manually verified and evaluated the data. However, since developing an automated "size match rate" calculation tool- we can now calculate a year's worth of "size match rates" within an hour. This allows us to more specifically identify areas where we can improve, for each client, and significantly reduce the time required for the software adjustments, leading to expected improvements in the quality of our service.

Size Recommendations Based on Both Customer and Item Size Information

This approach is closely related to the core philosophy of our size match algorithm. At Virtusize, we believe that size recommendations should be based on both the customer's size information and the item's size details. Common approaches that ignore item measurements and only make suggestions based on customer attributes, can mislead customers in the apparel industry. An example of this: "Users similar to you (age, gender) also purchased this."

Simply recommending items based on what other people bought, could result in customers purchasing sizes that do not fit their unique body measurements.

Therefore, by taking extra steps to verify the "size match rate," we can determine how accurately Virtusize recommends sizes and specifically how well the purchased sizes actually match the sizes recommended by Virtusize. A high "size match rate" is not always good, nor is a low rate always problematic. For example, if a specific product has unusual sizing and most people who usually buy M would need an L, and if this information isn't well communicated, some customers might still purchase M based on their usual size… leading to a lower "size match rate." A low "size match rate" doesn't necessarily indicate poor recommendation accuracy; it serves as a starting point for identifying causes and finding solutions in collaboration with our clients.

Case Studies of Improving Size Match Rate

When we identify groups with "size match rates" below our standard, our data science team begins evaluating whether adjustments to Virtusize's software are necessary or if there are potential improvement points on the client’s site.

We have collaborated with many clients to make various improvements, successfully increasing "size match rates" by up to 20% on numerous sites.

A simple example is a client site we'll call Brand A. Brand A's performance at the beginning of 2023 was relatively stable and not bad. We had sufficient data to measure the "size match rate" for each item and test new software adjustments. Through repeated adjustments and measurements over a year, we improved Brand A's "size match rate" by 18.6% compared to the same period the previous year!

Conclusion

Our data science team's mission is to continuously explore core methods for improving recommendation accuracy from both precision and performance perspectives, with the "size match rate" playing a significant role in this. In 2024, we will continue our efforts to enhance the quality of our service!

Introduction

At Virtusize, our in-house data science team continuously conducts evaluations and regularly refines the accuracy of our recommendation services. The information we collect from our Virtusize users consists of only four size details (height, weight, gender, and age). By combining this with some basic item information provided by our clients, we can adjust our how our system makes recommendations. Today, we will introduce the important metric for adjusting our recommendation logic, called the "Size Match Rate," and share a case study where we applied logic adjustments.

Size Match Rate

As we work to improve recommendation accuracy, we rely on a key metric called the "Size Match Rate." This term refers to the percentage of purchases, where customers bought the size that Virtusize recommended first.

This rate is calculated by combining our recommendation data with order information from our clients. We can delve into various categories and groups, such as brand + product type and product type + style, to score the match rate. By identifying where our recommendations align with customer expectations and where they do not, we can make more precise logic adjustments.

Previously, we manually verified and evaluated the data. However, since developing an automated "size match rate" calculation tool- we can now calculate a year's worth of "size match rates" within an hour. This allows us to more specifically identify areas where we can improve, for each client, and significantly reduce the time required for the software adjustments, leading to expected improvements in the quality of our service.

Size Recommendations Based on Both Customer and Item Size Information

This approach is closely related to the core philosophy of our size match algorithm. At Virtusize, we believe that size recommendations should be based on both the customer's size information and the item's size details. Common approaches that ignore item measurements and only make suggestions based on customer attributes, can mislead customers in the apparel industry. An example of this: "Users similar to you (age, gender) also purchased this."

Simply recommending items based on what other people bought, could result in customers purchasing sizes that do not fit their unique body measurements.

Therefore, by taking extra steps to verify the "size match rate," we can determine how accurately Virtusize recommends sizes and specifically how well the purchased sizes actually match the sizes recommended by Virtusize. A high "size match rate" is not always good, nor is a low rate always problematic. For example, if a specific product has unusual sizing and most people who usually buy M would need an L, and if this information isn't well communicated, some customers might still purchase M based on their usual size… leading to a lower "size match rate." A low "size match rate" doesn't necessarily indicate poor recommendation accuracy; it serves as a starting point for identifying causes and finding solutions in collaboration with our clients.

Case Studies of Improving Size Match Rate

When we identify groups with "size match rates" below our standard, our data science team begins evaluating whether adjustments to Virtusize's software are necessary or if there are potential improvement points on the client’s site.

We have collaborated with many clients to make various improvements, successfully increasing "size match rates" by up to 20% on numerous sites.

A simple example is a client site we'll call Brand A. Brand A's performance at the beginning of 2023 was relatively stable and not bad. We had sufficient data to measure the "size match rate" for each item and test new software adjustments. Through repeated adjustments and measurements over a year, we improved Brand A's "size match rate" by 18.6% compared to the same period the previous year!

Conclusion

Our data science team's mission is to continuously explore core methods for improving recommendation accuracy from both precision and performance perspectives, with the "size match rate" playing a significant role in this. In 2024, we will continue our efforts to enhance the quality of our service!

Tell us more about you to download

ありがとうございます!下のボタンより資料をダウンロードしてください。
ダウンロード
Oops! Something went wrong while submitting the form.
Thank you! Please download the file below.
Download a file
Oops! Something went wrong while submitting the form.
감사합니다! 파일을 다운로드해주세요!
파일 다운로드
Oops! Something went wrong while submitting the form.

Up next

【Safari Lounge】Virtusize比較機能の利用/非利用でCVRに約9倍もの差がついています!

【UNDER ARMOUR】Virtusize導入後、導入前の同期間と比較してVirtusize利用グループのサイズ起因返品率が27%減少

【WWD掲載】返品率11%削減 「アンダーアーマー」とタッグ、バーチャサイズが初の「シューズ のオンライン試着」実装

【新機能】好みの着こなしでオンライン試着できるアシスタント機能をリリース!多様化する着こなし需要に応える

コーポレートサイトを大幅にリニューアルしました!

バーチャサイズ、靴のオンライン試着サービスをアンダーアーマーへ提供開始 ~フットウェアの返品率低減へ貢献 ~

New Partner - HIRYU

Safari Lounge - The conversion rate (CVR) is about nine times higher when using Virtusize's comparison feature compared to when it is not used!

Online Shoe Fitting Service "Virtusize for Shoes" Adds "Sandals" Category

New Recommendation Service Based on Popular Items Now Available on the Top Page!

New partner -LIFiLL-

[UNDER ARMOUR] Case study

Safari Lounge - Virtusize 비교 기능을 사용할 때와 사용하지 않을 때의 CVR 차이는 약 9배에 달합니다!

Virtusize의 가상 피팅 솔루션, 오리지널 컷소 브랜드 【LIFiLL】에 제공 시작

글로벌 온라인 피팅 솔루션 버츄사이즈, 영국 프리미엄 컨템포러리 브랜드 올세인츠(Allsaints)에 서비스 제공 시작

버츄사이즈, 아웃도어 브랜드 네파(NEPA)에 서비스 제공

버츄사이즈, 온라인 쇼핑 솔루션 새 버전 출시

입어볼 수 없다면, 가지고 있는 옷과 비교해보세요. 사이즈 솔루션 ‘버츄사이즈’

New Key Metric for Virtusize Logic! Introducing "Size Match Rate."

Introduction

At Virtusize, our in-house data science team continuously conducts evaluations and regularly refines the accuracy of our recommendation services. The information we collect from our Virtusize users consists of only four size details (height, weight, gender, and age). By combining this with some basic item information provided by our clients, we can adjust our how our system makes recommendations. Today, we will introduce the important metric for adjusting our recommendation logic, called the "Size Match Rate," and share a case study where we applied logic adjustments.

Size Match Rate

As we work to improve recommendation accuracy, we rely on a key metric called the "Size Match Rate." This term refers to the percentage of purchases, where customers bought the size that Virtusize recommended first.

This rate is calculated by combining our recommendation data with order information from our clients. We can delve into various categories and groups, such as brand + product type and product type + style, to score the match rate. By identifying where our recommendations align with customer expectations and where they do not, we can make more precise logic adjustments.

Previously, we manually verified and evaluated the data. However, since developing an automated "size match rate" calculation tool- we can now calculate a year's worth of "size match rates" within an hour. This allows us to more specifically identify areas where we can improve, for each client, and significantly reduce the time required for the software adjustments, leading to expected improvements in the quality of our service.

Size Recommendations Based on Both Customer and Item Size Information

This approach is closely related to the core philosophy of our size match algorithm. At Virtusize, we believe that size recommendations should be based on both the customer's size information and the item's size details. Common approaches that ignore item measurements and only make suggestions based on customer attributes, can mislead customers in the apparel industry. An example of this: "Users similar to you (age, gender) also purchased this."

Simply recommending items based on what other people bought, could result in customers purchasing sizes that do not fit their unique body measurements.

Therefore, by taking extra steps to verify the "size match rate," we can determine how accurately Virtusize recommends sizes and specifically how well the purchased sizes actually match the sizes recommended by Virtusize. A high "size match rate" is not always good, nor is a low rate always problematic. For example, if a specific product has unusual sizing and most people who usually buy M would need an L, and if this information isn't well communicated, some customers might still purchase M based on their usual size… leading to a lower "size match rate." A low "size match rate" doesn't necessarily indicate poor recommendation accuracy; it serves as a starting point for identifying causes and finding solutions in collaboration with our clients.

Case Studies of Improving Size Match Rate

When we identify groups with "size match rates" below our standard, our data science team begins evaluating whether adjustments to Virtusize's software are necessary or if there are potential improvement points on the client’s site.

We have collaborated with many clients to make various improvements, successfully increasing "size match rates" by up to 20% on numerous sites.

A simple example is a client site we'll call Brand A. Brand A's performance at the beginning of 2023 was relatively stable and not bad. We had sufficient data to measure the "size match rate" for each item and test new software adjustments. Through repeated adjustments and measurements over a year, we improved Brand A's "size match rate" by 18.6% compared to the same period the previous year!

Conclusion

Our data science team's mission is to continuously explore core methods for improving recommendation accuracy from both precision and performance perspectives, with the "size match rate" playing a significant role in this. In 2024, we will continue our efforts to enhance the quality of our service!

Introduction

At Virtusize, our in-house data science team continuously conducts evaluations and regularly refines the accuracy of our recommendation services. The information we collect from our Virtusize users consists of only four size details (height, weight, gender, and age). By combining this with some basic item information provided by our clients, we can adjust our how our system makes recommendations. Today, we will introduce the important metric for adjusting our recommendation logic, called the "Size Match Rate," and share a case study where we applied logic adjustments.

Size Match Rate

As we work to improve recommendation accuracy, we rely on a key metric called the "Size Match Rate." This term refers to the percentage of purchases, where customers bought the size that Virtusize recommended first.

This rate is calculated by combining our recommendation data with order information from our clients. We can delve into various categories and groups, such as brand + product type and product type + style, to score the match rate. By identifying where our recommendations align with customer expectations and where they do not, we can make more precise logic adjustments.

Previously, we manually verified and evaluated the data. However, since developing an automated "size match rate" calculation tool- we can now calculate a year's worth of "size match rates" within an hour. This allows us to more specifically identify areas where we can improve, for each client, and significantly reduce the time required for the software adjustments, leading to expected improvements in the quality of our service.

Size Recommendations Based on Both Customer and Item Size Information

This approach is closely related to the core philosophy of our size match algorithm. At Virtusize, we believe that size recommendations should be based on both the customer's size information and the item's size details. Common approaches that ignore item measurements and only make suggestions based on customer attributes, can mislead customers in the apparel industry. An example of this: "Users similar to you (age, gender) also purchased this."

Simply recommending items based on what other people bought, could result in customers purchasing sizes that do not fit their unique body measurements.

Therefore, by taking extra steps to verify the "size match rate," we can determine how accurately Virtusize recommends sizes and specifically how well the purchased sizes actually match the sizes recommended by Virtusize. A high "size match rate" is not always good, nor is a low rate always problematic. For example, if a specific product has unusual sizing and most people who usually buy M would need an L, and if this information isn't well communicated, some customers might still purchase M based on their usual size… leading to a lower "size match rate." A low "size match rate" doesn't necessarily indicate poor recommendation accuracy; it serves as a starting point for identifying causes and finding solutions in collaboration with our clients.

Case Studies of Improving Size Match Rate

When we identify groups with "size match rates" below our standard, our data science team begins evaluating whether adjustments to Virtusize's software are necessary or if there are potential improvement points on the client’s site.

We have collaborated with many clients to make various improvements, successfully increasing "size match rates" by up to 20% on numerous sites.

A simple example is a client site we'll call Brand A. Brand A's performance at the beginning of 2023 was relatively stable and not bad. We had sufficient data to measure the "size match rate" for each item and test new software adjustments. Through repeated adjustments and measurements over a year, we improved Brand A's "size match rate" by 18.6% compared to the same period the previous year!

Conclusion

Our data science team's mission is to continuously explore core methods for improving recommendation accuracy from both precision and performance perspectives, with the "size match rate" playing a significant role in this. In 2024, we will continue our efforts to enhance the quality of our service!

Up next

【Safari Lounge】Virtusize比較機能の利用/非利用でCVRに約9倍もの差がついています!

【UNDER ARMOUR】Virtusize導入後、導入前の同期間と比較してVirtusize利用グループのサイズ起因返品率が27%減少

【WWD掲載】返品率11%削減 「アンダーアーマー」とタッグ、バーチャサイズが初の「シューズ のオンライン試着」実装

【新機能】好みの着こなしでオンライン試着できるアシスタント機能をリリース!多様化する着こなし需要に応える

コーポレートサイトを大幅にリニューアルしました!

バーチャサイズ、靴のオンライン試着サービスをアンダーアーマーへ提供開始 ~フットウェアの返品率低減へ貢献 ~

Ready to boost your sales
and customer satisfaction?
Try use for size.

Get in touch with us